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A GAME OF ALIGNMENT:
COLLECTIVE BEHAVIOR OF MULTI-SPECIES

SIMING HE AND EITAN TADMOR

Abstract. We study the (hydro-)dynamics of multi-species driven by alignment. What
distinguishes the different species is the protocol of their interaction with the rest of the
crowd: the collective motion is described by different communication kernels, φαβ , between
the crowds in species α and β. We show that flocking of the overall crowd emerges provided
the communication array between species forms a connected graph. In particular, the crowd
within each species need not interact with its own kind, i.e., φαα = 0; different species which
are engaged in such ‘game’ of alignment require a connecting path for propagation of infor-
mation which will lead to the flocking of overall crowd. The same methodology applies to
multi-species aggregation dynamics governed by first-order alignment: connectivity implies
concentration around an emerging consensus.
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1. Multi-species dynamics — statement of main results

1.1. The (hydro-)dynamics of multi-species. We study the (hydro-)dynamics of multi-
species driven by environmental averaging. The ‘environment’ consists of agents, each is
identified by a position/velocity pair (xi

α,v
i
α) ∈ (Rd,Rd). The indexing {·}iα signifies agent

“i” in a species “α”. What distinguishes one species from another is the way they interact
with the environment: let φαβ > 0 be the communication kernel between species α and β,
then the dynamics describes the collective motion of agents, each of which aligns its velocity
to a weighted average of velocities of neighboring agents — both from its own as well as
other species,















ẋi
α = vi

α,

v̇i
α =

∑

β∈I

1

Nβ

Nβ
∑

j=1

φαβ(|xj
β − xi

α|)(vj
β − vi

α),
i ∈ 1, 2, ..., Nα, α ∈ I,

subject to initial data (xi
α,v

i
α)
∣

∣

t=0
= (xi

α0,v
i
α0). Here, Nα is the size of the species α, which

forms part of the overall crowd of size
∑

α∈I Nα. The large-crowd dynamics, Nα∈I ≫ 1, is
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captured by the hydrodynamic description, consult section 2,

(1.1)











∂tρα +∇ · (uαρα) = 0;

∂t(ραuα) +∇ · (ραuα ⊗ uα) =
∑

β∈I

∫

φαβ(|x− y|)
(

uβ(y)− uα(x)
)

ρα(x)ρβ(y)dy.

Each of the different species is identified by a pair of density/velocity (ρα,uα), subject to
initial condition (ρα,uα)

∣

∣

t=0
= (ρα0,uα0) ∈ L1

+(R
d) × W 1,∞(Rd), ∀α ∈ I. There are two

extreme cases: when φαβ ≡ φ the crowd consists of a single species driven by the same
communication kernel







∂tρ+∇ · (ρu) = 0,

∂t(ρu) +∇ · (ρu⊗ u) =

∫

φ(|x− y|)(u(t,y)− u(t,x))ρ(t,x)ρ(t,y)dy.

For the large literature on the single species hydrodynamics we refer to [1] and the references
therein. When φαβ = φδαβ, the crowd of (1.1) splits into |I| species driven by the same
communication kernel, thus we end up with identical copies of the single species dynamics.
In this paper we study all the intermediate cases which involve a genuine multi -species
dynamics, driven by symmetric communication array of radial decreasing kernels, Φ = {φαβ},
(1.2) φαβ = φβα > 0, φαβ are radial and decreasing.

1.2. Smooth solutions must flock. Recall that the long time behavior for the single-
species model is dictated by the communication kernel φ, [22, 15]: if the communication
kernel φ admits a Pareto-type ‘fat-tail” decay1, φ(r) & (1 + r)−θ with θ 6 1 , then “smooth
solutions must flock”, namely, strong solutions of the single-species model exhibit flocking

behavior as max
x∈supp {ρ(t,·}

|u(t,x)− u∞| t→∞−→ 0.

This brings us to our first main result regarding the large-time behavior of the multi-
species dynamics. Let Φ(r) := {φαβ(r)}α,β∈I denote the array of communication kernels
associated with (1.1). The main feature here is that flocking of multi-species dynamics does
not require direct, global communication among all species — we allow φαβ(r) to vanish,
indicating lack of communication between some species α and β. Instead, what matters is
a minimal requirement that the communication among species forms a connected network
in the sense that there is a connecting path which propagates the information of alignment
between every pair of species. To this end, we introduce the weighted graph Laplacian
associated with Φ(r),

(1.3) (∆MΦ(r))αβ :=















−φαβ(r)
√

MαMβ, α 6= β;

∑

γ 6=α

φαγ(r)Mγ , α = β,

where the weights, {Mα}α∈I , are the constant masses of the different species

Mα(t) :=

∫

ρα(t,x)dx ≡ Mα > 0.

1And in a slightly more general setup — if φ is global in the sense that

∫ ∞

φ(r)dr = ∞.
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Its properties are outlined in section 3 below. In particular, the communication array Φ(r)
forms a connected graph as long as its second eigenvalue λ2

(

∆MΦ(r)
)

> 0. Our main result
shows that inter-species connectivity implies the flocking behavior of the whole crowd.

Theorem 1.1 (Strong solutions must flock).
Let (ρα(t, ·),uα(t, ·)) ∈ L1

+(R
d)×W 1,∞(Rd), α ∈ I be a strong solution of the multi-species

dynamics (1.1), subject to compactly supported initial conditions (ρα0,uα0) with finite velocity
fluctuations

δV0 := max
α,β∈I

sup
x,y∈S0

|uα0(x)− uβ0(y)| < ∞, S0 := ∪αsupp{ρα0(·)}.

Assume that the communication array Φ(r) = {φαβ(r)}α,β∈I satisfies a Pareto-type ‘fat-tail’
connectivity condition

λ2(∆MΦ(r)) &
1

(1 + r)θ
, θ < 1.(1.4)

Then the support, S(t) := ∪αsupp{ρα(t, ·)}, remains within a finite diameter D∞ < ∞
(depending on 1− θ,M, δV0), and the different species flock towards a limiting velocity u∞,

(1.5)
∑

α∈I

∫

|uα(t,x)− u∞|2ρα(t,x)dx 6
∑

α∈I

∫

|uα0(x)− u∞|2ρα0(x)dx · e−2νt,

at exponential rate, ν, dictated by the spatial scale D∞

ν = ζ
M
λ2(∆MΦ∞) &

ζ
M

(1 +D∞)θ
, Φ∞ := Φ(D∞), ζ

M
:= 1− maxαMα

∑

α Mα
> 0.

The proof of theorem 1.1, carried out in section 4 below, is achieved by showing the decay
of the fluctuations

(

∑

α,β∈I

∫∫

|uα(t,x)− uβ(t,y)|pρα(t,x)ρβ(t,y)dxdy
)1/p

t→∞−→ 0.

In particular, the decay of the energy fluctuations, corresponding to p = 2,

δE(t) =
∑

α,β∈I

∫∫

|uα(t,x)− uβ(t,y)|2ρα(t,x)ρβ(t,y)dxdy,

and the decay of uniform fluctuations, corresponding to p = ∞,

δV (u(t)) = max
α,β∈I

sup
x,y∈S(t)

|uα(t,x)− uβ(t,y)|, S(t) = ∪αsupp{ρα(t, ·)},

imply that all species ‘aggregate’ around a limiting velocity u∞. Since the total mass M(t) =
∑

α

∫

ρα(t,x)dx and the total momentum m(t) =
∑

α

∫

ραuα(t,x)dx are conserved in time,
M(t) = M and m(t) = m0, it follows that the different species flock together with the only

possible limiting velocity uα(t, ·) t→∞−→ u∞ :=
m0

M
.

Remark 1.1 (Why weighted Laplacian?). In case of equi-weighted species Mα ≡ 1, the
weighted Laplacian (1.3) amounts to the usual graph Lalpalcian ∆Φ(r). Its Fiedler number,
λ2(∆Φ(r)), quantifies the connectivity of the graph associated with the adjacency matrix
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Φ(r), [10], [18, proposition 6.1]. Here, we advocate the use of the weighted graph Laplacian,
∆MΦ(r), whose properties are outlined in section 3 below; in particular, consult (3.9),

(1.6)
M

κ2|I| 6
λ2(∆MΦ)

λ2(∆Φ)
6

Mκ2

|I| , κ =
maxMα

minMα

, M :=
∑

α∈I

Mα(0),

and hence Φ(r) is connected as long as λ2

(

∆MΦ(r)
)

≈M λ2

(

∆Φ(r)
)

> 0. The advantage
of using the weighted λ2(∆MΦ(r)), however, is that it provides the right scaling for the
decay rate of multi-species dynamics (1.5), independent of the condition number, κ, and the
number of different species, |I|. On the other hand, if we accept κ, |I|-dependence, then (1.6)
implies that for (1.4) to hold it suffices to verify the Pareto ‘fat-tail’ connectivity condition
λ2(∆Φ(r))&

M,κ,|I|
(1 + r)−θ with θ < 1.

Remark 1.2 (Game of alignment). The graph Laplacian of the communication array Φ(r)
is independent of the self-interacting kernels {φαα |α ∈ I}. Thus, according to theorem 1.1,
flocking can be viewed as the outcome of a ‘game’ in which agents from one species interact
with different species but are independent of the interaction with their own kind. Alignment
dynamics based on a game within a single species was recently studied in [11]; a two-species
ensemble dynamics in [13]. A main feature in our multi-species alignment game (of two or
more species) is that one can ignore interactions with its own kind, i.e., set φαα = 0 in
(1.1) and yet the information will eventually be reflected through interactions with the other
connected species leading to overall flocking.

Example 1.1. Consider the case of two species with 2×2 symmetric communication array,

Φ =





0 φ12(r)

φ21(r) 0



 , φ12(r) = φ21(r) &
1

(1 + r)θ
, θ < 1.

In this case, agents in each of the two groups interact with the other group but not with their
own kind (φ11 = φ22 ≡ 0). The large-time behavior of such ‘game’ leads to flocking.
Similarity, consider the case of four species with 4× 4 symmetric communication array

Φ =









0 φ12 0 φ14

φ21 0 φ23 0
0 φ32 0 φ34

φ41 0 φ43 0









, φαβ(r) & (1 + r)−µ·min{α,β}, µ < 1/3.

Again, species do not interact with their own kind, but the connectivity of inter-group inter-
cations is strong enough to induce flocking.

We conclude by noting that the relation between connectivity and flocking was motivated
by our earlier study of flocking for discrete dynamics of one species, {(xi(t),vi(t))}Ni=1, gov-

erned by v̇i = 1
N

∑N
j=1 φ(|xj − xi|)(vj − vi) and subject to short-range interactions, [19,

Theorem 2.11]. It was shown that if connectivity persists in time so that
∫

λ2(∆Φ(t))dt = ∞, Φij(t) = {φ(|xi(t)− xj(t)|)},

then flocking follows, vi(t)
t→∞−→ v∞.
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1.3. One- and two-dimensional smoothness — sub-critical data. The conditional
statement that ‘smooth solutions must flock’ raises the question whether the multi-species
dynamics (1.1) admits global smooth solutions.

The case of one species was studied in one- and two-spatial dimensions. The one-dimensional
well-posedness theory [3] provided precise characterization of global smooth solutions with
sub-critical initial data, u′

0 + φ ∗ ρ0 > 0. Global smoothness in two dimensions was proved
for sub-critical initial data outlined in [22],[15]. Here we develop the corresponding well-
posedness of multi-species dynamics (1.1) in one- and two-spatial dimensions.

The one-dimensional result is stated for non-vacuous initial data in the 1D torus.

Theorem 1.2 (Existence of smooth solutions — one-dimensional dynamics). Con-
sider the multi-species dynamics (1.1) subject to non-vacuous initial data {(ρα0 > 0, uα0)} ∈
(L1

+(T),W
1,∞(T)). If the initial condition satisfies the sub-critical threshold condition

(1.7) u′
α0(x) +

∑

β∈I

φαβ ∗ ρβ0(x) > 0, ∀x ∈ T, α ∈ I,

then the multi-species dynamics (1.1) admits global non-vacuous smooth solution.

Turning to the two-dimensional case, we let (ρα,uα) be a solution of the 2D multi-species
dynamics (1.1). Global smoothness for sub-critical initial data is quantified in terms of the
spectral gap associated with the (symmetric part of the) 2× 2 velocity gradient matrix e.g.,
[15]

Sα(t,x) :=
1

2

(

∇uα(t,x) + (∇uα(t,x))
⊤
)

, (∇uα)ij = ∂ju
i
α(t, ·), i, j ∈ {1, 2}.

Theorem 1.3 (Existence of smooth solutions — two-dimensional dynamics). Con-
sider the two-dimensional multi-species dynamics (1.1) subject to compactly supported initial
conditions {(ρα0,uα0)}α∈I ∈ (L1

+(R
2),W 1,∞(R2). Assume a connected communication array

Φ(r) = {φαβ(r)}α,β∈I satisfying the ‘fat-tail’ decay (1.4), λ2(∆MΦ(r)) & (1 + r)−θ, θ < 1.
There exists a constant C1 = C1(|φ′

αβ|∞,M, γ) (specified in (5.14) below), such that if the
initial fluctuations are not too large, δV0 6 C1, and the following critical threshold conditions
hold

divuα0(x) +
∑

β∈I

φαβ ∗ ρα0(x) > 0, ∀x ∈ R
2,(1.8a)

max
x,α

|λ2(Sα(0,x))− λ1(Sα(0,x))| <
1

2
C1,(1.8b)

then the multi-species dynamics (1.1) admits a global smooth solution (ρα,uα) ∈ C(R+;L
∞∩

L1(R2))×C(R+; Ẇ
1,∞(R2)) with large time hydrodynamic flocking behavior uα(t,x) → u∞.

1.4. Multi-species aggregation model. We turn our attention to the multi-species ag-
gregation dynamics. The aggregation dynamics of a single-species arises in different contexts
of modeling opinion dynamics, the rendezvous problem, etc; see e.g., [2],[16],[9],[4],[12],[20]
and the reference therein,

{

∂tρ−∇ ·
((

(xφ) ∗ ρ
)

ρ
)

= 0

ρ(t = 0,x) = ρ0(x),
∀x ∈ R

d.
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Global smooth solutions tend to a Dirac mass which concentrates at the invariant center
of mass. This large time concentration reflects the emergence of consensus (in opinion
dynamics) and rendezvous problem (in distributed sensor-based dynamics) etc. There is also
an increasing interest in two species-aggregation models, [12] and the recent works [6],[7],
and [8]. In particular, [6],[7] study measure-valued solutions of the 2-species dynamics after
blow-up and [8] categorize the possible steady states of the two-species system. Here we
extend the discussion to the multi-species setting

(1.9)







∂tρα −
∑

β∈I

∇ · ((xφαβ) ∗ ρβ)ρα) = 0,

ρα(t = 0,x) = ρα0(x),

∀x ∈ R
d, α ∈ I.

The different species are identified by their densities — ρα denotes the agent density in the
species α, a macroscopic realization of the agent-based dynamics of a species with Nα agents,
each has position, xi

α, and interacts with the other species

ẋi
α = −

∑

β∈I

1

Nβ

Nβ
∑

j=1

φαβ(|xi
α − xj

β|)(x
j
β − xi

α).

In this paper, we extend the results to the multi-species setting and give explicit sufficient
condition to guarantee consensus under the assumption that the communication array Φ =
{φαβ} form a connected network. Our main theorem is summarized in the following.

Theorem 1.4 (First-order aggregation). Let {ρα(t, ·)} ∈ W 1
+(R

d) be a strong solution of
the multi-species aggregation system (1.9) subject to compactly supported initial data (ρα0)α∈I
with a finite diameter

D0 = sup
x,y∈S0

|x− y|, S0 = ∪αsupp {ρα0}

and governed by radially symmetric decreasing kernels {φαβ(r)} (1.2). Let Φ0 denote the
communication array scaled at the initial diameter, Φ0 = {φαβ(D0)}α,β∈I . There holds

δD(t) 6 δD0 · e−2ζMλ2(∆MΦ0)t, δD(t) :=
∑

α,β∈I

∫∫

|x− y|2ρα(t,x)ρβ(t,y)dxdy

In particular, if the communication array Φ0 is connected, then the different species {ρα}α∈I
aggregate towards the limiting position x∞

(1.10)
∑

α

∫

|x− x∞|2ρα(t,x)dx .
∑

α

∫

|x− x∞|2ρα0(x)dx · e−2νt,

at exponential rate, ν, dictated by the initial spatial scale D0,

ν = ζ
M
λ2(∆MΦ0), Φ0 = {φαβ(D0)}, ζ

M
= 1− maxαMα

∑

αMα
> 0.

Remark 1.3. The proof of theorem 1.4, carried out in section 6 below, implies that if the
communication array {φαβ(D0)} forms a connected array then all species ‘aggregate’ around a

limiting position x∞. Since the center of mass
1

M(t)

∑

α

∫

ρα(t,x)xdx is conserved in time,

it follows that the different species aggregate around x∞ = center of mass as the only possible
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limiting position. As before, aggregation depends on path connectivity but are independent of
the self-interacting kernels, {φαα |α ∈ I} which are allowed to vanish.

Remark 1.4 (Existence of smooth solution). Assume that xφαβ ∈ W 1,∞(Rd). Then, the
multi-species dynamics which we rewrite as

∂tρα +
∑

β∈I

((xφαβ) ∗ ρβ) · ∇ρα = −
∑

β∈I

∇ · ((xφαβ) ∗ ρβ)ρα

implies the uniform bound

d

dt
|ρα|∞ 6

∑

β∈I

|∇ · (xφαβ) ∗ ρβ|∞|ρα|∞ .
∑

β∈I

|∇ · (xφαβ)|∞Mβ|ρα|∞.

The uniform bound of the ρα’s implies higher Hs Sobolev bounds by standard energy esti-
mates. Thus, for example we have the H1-bound

d

dt

∑

α∈I

|∇ρα|22 =
∑

α,β∈I

∫

|∇ρα∇(∇ · (φx) ∗ ρβρα + φx ∗ ρβ · ∇ρα)|dx

6
∑

α,β∈I

(

|∇ρα|2|∇(φx)|∞|∇ρβ |2||ρα|∞ + 3|∇ρα|22|∇(φx)|∞|ρβ|1
)

.
∑

α∈I

|∇ρα|22.

The paper is organized as follows: In section 2, we formally derive the macroscopic model
(1.1) as teh large-crowd dynamic description of the discrete agent-based model. In section 3
we prepare the weighted Poincaré inequality associated with weighted graph Laplacian which
will be used in the sequel. In section 4, we prove the main results of flocking: decay of energy
fluctuations in theorem 4.1 and decay of uniform fluctuations in 4.2, which in turn lead to
the proof of theorem 1.1. In section 5, we prove the existence of global smooth solutions —
the one- and two-dimensional setup in theorem 1.2 and respectively 1.3. Finally in section
6, we treat the multi-species aggregation of system, proving Theorem 1.4.

2. Derivation of the mesoscopic and hydrodynamic models

In this section, we formally derive the multi-species hydrodynamics (1.1) from the under-
lying multi-species agent-based dynamics. To this end, we first derive a mesoscopic Vlasov
type description which in turn yields the macroscopic description (1.1).

To formulate the mesoscopic equation, we first define the following empirical probability
measure associated to the species α, which represents the probability of finding an agent
from species α at position x with velocity v:

fα(t,x,v) =
1

Nα

Nα
∑

i=1

δxi
α(t)

⊗ δvi
α(t)

.(2.1)

Here Nα denotes the number of agents in the group α. Evolution of each probability density
fα can be derived by testing ∂tfα against an arbitrary smooth function ϕ through equation
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(1.1)

∫∫

∂tfα(t,x,v)ϕ(x,v)dxdv =
1

Nα

Nα
∑

i=1

∂tϕ(x
i
α(t),v

i
α(t))

=
1

Nα

Nα
∑

i=1

[ẋi
α · ∇xϕ(x

i
α(t),v

i
α(t)) + v̇i

α · ∇v(ϕ(x
i
α,v

i
α))](2.2)

=
1

Nα

Nα
∑

i=1

[vi
α · ∇xϕ(x

i
α,v

i
α) + F i

α · ∇vϕ(x
i
α,v

i
α)],

with an alignment forcing F i
α given by

F i
α =

∑

β∈I

1

Nβ

Nβ
∑

j=1

φαβ(|xj
β − xi

α|)(vj
β − vi

α) =
∑

β∈I

Lαβ(fβ)(x
i
α,v

i
α),

where Lαβ(fβ)(x
i
α,v

i
α) :=

∫∫

φαβ(|y − xi
α|)(w − vi

α)fβ(y,w)dydw. Formal integration by

parts in (2.2) yields
∫∫

∂tfα(t,x,v)ϕ(x,v)dxdv

=

∫∫

[v · ∇xϕ(x,v) +
∑

β∈I

Lαβ(fβ)(x,v) · ∇vϕ(x,v)]fα(x,v)dxdv

=−
∫∫

[

v · ∇xfα(x,v) +∇v ·
(

∑

β∈I

Lαβ(fβ)fα

)]

ϕdxdv.

Since the test function ϕ is arbitrary, the above integral equation yields the mesoscopic scale
equation

∂tfα(x,v) + v · ∇xfα(x,v) +∇v ·
(

∑

β∈I

Lαβ(fβ)fα

)

= 0.(2.3)

The bi-linear expression inside the parenthesis on the left represents the inter-species align-
ment interactions. This completes the derivation from the microscopic agent-based dynamics
to the mesoscopic scale dynamics.

The hydrodynamic description is formally achieved by calculating the time evolution of
the ‘observable moments’, e.g., the mass density and the momentum density:

(2.4)















ρα(t,x) :=

∫

Rd

fα(t,x,v)dv;

ραuα(t,x) :=

∫

Rd

vfα(t,x,v)dv.

By integrating the mesoscopic equation (2.3) in the velocity variable v and applying inte-
gration by parts, we derive the mass equation for ρα:

(ρα)t +∇x · (ραuα) = 0, ∀α ∈ I.(2.5)
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The evolution of the momentum ραuα is obtained by integrating (2.3) against v,

0 =

∫

Rd

[

∂t(vfα) + v(v · ∇xfα) + v∇v ·
(

∑

β∈I

Lαβ(fβ)fα

)]

dv =: I + II + III.(2.6)

The first term is the time derivative of the momentum density, ραuα in (2.4),

I = ∂t(ραuα);(2.7)

the second term II can be rewritten as

II = ∇x · (ραuα ⊗ uα) +∇x ·
∫

Rd

(uα − v)⊗ (uα − v)fα(x,vα)dv

=: ∇x · (ραuα ⊗ uα) +∇x · Pα,
(2.8)

where Pα is interpreted as pressure tensor. For the third term III in (2.6), we use integration
by parts to rewrite it as follows

III =

∫

v∇v ·
(

∑

β∈I

Lαβ(fβ)fα

)

dv = −
∑

β∈I

∫

Lαβ(fβ)fαdv

=−
∑

β∈I

∫∫∫

φαβ(|y − x|)(w − v)fβ(y,w)fα(x,v)dydwdv

=−
∑

β∈I

∫∫∫

φαβ(|y − x|)(wfβ(y,w))fα(x,v)dwdydv

+
∑

β∈I

∫∫∫

φαβ(|y− x|)fβ(y,w)(vfα(x,v))dvdydw(2.9)

=−
∑

β∈I

∫∫

φαβ(|y− x|)(ρβuβ)(y)fα(x,v)dydv

+
∑

β∈I

∫∫

φαβ(|y − x|)fβ(y,w)(ραuα)(x)dydw

=−
∑

β

∫

φαβ(|x− y|)(uβ(y)− uα(x))ρα(x)ρβ(y)dy.

Now combining (2.7), (2.8) and (2.9) we obtain the hydrodynamic momentum equation

∂t(ραuα) +∇ · (ραuα ⊗ uα) +∇x · Pα =
∑

β

∫

φαβ(|x− y|)(uβ(y)− uα(x))ρα(x)ρβ(y)dy.

Similar to the one-species (hydro-)dynamics, [14], [17], we limit ourselves to the mono-kinetic
ansatz fα(x,v) = ρα(x)δuα(x)(v) to impose the pressure closure Pα ≡ 0, and end up with
the multi-species hydrodynamics (1.1).
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3. Weighted Poincaré inequalities

Given an N×N array A = {aαβ} of non-negative entries and N -vector of positive weights
{wα}, we are concerned with a weighted Poincaré inequality of the form

(3.1)
∑

α,β

aαβ|xα − xβ|2wαwβ > ν
∑

α,β

|xα − xβ|2wαwβ, ν > 0.

The standard Poincaré (or Courant-Fisher) inequality tells us that, in case of equal weights
wα ≡ 1, (3.1) holds with optimal ν given by the Fielder number, ν = λ2(∆A)/N , where ∆A
is the graph Laplacian, [10], [18, proposition 6.1],

(3.2)
∑

α,β

aαβ |xα−xβ|2 >
λ2(∆A)

N

∑

α,β

|xα−xβ|2. (∆A)αβ := −(1−δαβ)aαβ+δαβ
∑

γ 6=α

aαγ .

To treat the case of general weights, we let ∆wA denote the weighted Laplacian

(3.3) (∆wA)αβ =















−aαβ
√
wαwβ, α 6= β,

∑

γ 6=α

aαγwγ, α = β.

Observe that ∆wA is symmetric yet not row stochastic. Its second eigenvalue dictates the
following weighted Poincaré inequality for arbitrary N -vectors x = {xα}.

Lemma 3.1 (Weighted Poincaré inequality – vectors). There holds

(3.4)
∑

α,β

aαβ |xα − xβ|2wαwβ >
λ2(∆wA)
∑

β wβ

∑

α,β

|xα − xβ|2wαwβ.

Remark 3.1 (Scaling). Lemma 3.1 with w ≡ 1 recovers the regular Poincaré (3.2). Observe
that (3.2) together with the obvious minw2

α 6 wαwβ 6 maxw2
α yield a desired bound (3.1)

with ν = λ2(∆A)κ−2/N ,

(3.5)
∑

α,β

aαβ |xα − xβ|2wαwβ > λ2(∆A)
1

κ2N

∑

α,β

|xα − xβ|2wαwβ, κ :=
maxwα

minwα
.

The point to note here is that this bound in terms of λ2(∆A) depends on N and the condition
number κ. In contrast, the weighted bound (3.4) which involves λ2(∆w(A)) has the right
‘scaling’, depending on the (usually invariant) total mass of the weights but otherwise it is
independent N, κ.

Proof of Lemma 3.1. The sum on the left of (3.4) can be expressed as a bi-linear form in
terms of the weighted Laplacian ∆wA in (3.3) (here and below we abbreviate

√
wx =

(
√
w1x1, . . . ,

√
wNxN)

⊤)

〈

(∆wA)
√
wx,

√
wx
〉

:= −
∑

α

∑

β 6=α

aαβ
√
wαwβ

√
wα

√
wβ xαxβ +

∑

α

∑

β 6=α

aαβwβwα|xα|2

≡ 1

2

∑

α

∑

β 6=α

aαβ|xβ − xα|2wαwβ,
(3.6)
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which shows that the symmetric Laplacian ∆wA is positive semi-definite with eigenvalues
0 = λ1 6 λ2 6 . . .. Here, λ1 is the zero eigenvalue associated with the eigenvector

√
w :=

(
√
w1, . . . ,

√
wN)

⊤,
(

(∆wA)
√
w
)

α
= −

∑

β 6=α

aαβ
√
wαwβ

√
wβ +

∑

β 6=α

aαβwβ

√
wα ≡ 0,

and hence (∆wA) (
√
wx) = 0 for any constant vector x = x(1, 1, . . . , 1)⊤. In particular, for

x =

∑

β wβxβ
∑

β wβ
the orthogonal complement of

√
wx is given by {√w(x− x)},

〈√
w(x− x),

√
wx

〉

= 0, x :=

∑

β wβxβ
∑

β wβ

,

hence

(3.7)
〈

(∆wA)
√
wx,

√
wx
〉

=
〈

(∆wA)
√
w(x− x),

√
w(x− x)

〉

> λ2(∆wA)×|
√
w(x−x)|2.

A straightforward computation yields

|
√
w(x− x)|2 =

∑

α

wα|xα|2 − 2
∑

α

wαxαx+
∑

α

wα|x|2 =
∑

α

wα|xα|2 −
|∑β wβxβ|2
∑

β wβ

=
1

∑

β wβ

(

∑

α,β

wαwβ|xα|2 −
∑

β

w2
β|xβ|2 −

∑

α

∑

β 6=α

wαwβ xαxβ

)

=
1

2
∑

β wβ

(

∑

α

∑

β 6=α

wαwβ|xα|2 +
∑

α

∑

β 6=α

wαwβ|xβ|2 − 2
∑

α

∑

β 6=α

wαwβ xαxβ

)

≡ 1

2
∑

β wβ

∑

α

∑

β 6=α

|xα − xβ|2wαwβ,

and (3.4) follows from (3.6) and (3.7). �

Remark 3.2 (Optimality). The proof of Lemma 3.1 shows the optimality of the weighted
Laplacian ( — choose

√
wx as the second, Fiedler eigenvector of ∆wA)), leading to a

Courant-Fisher-type characterization

(3.8)
λ2(∆wA)
∑

β wβ
= min

|δx|w=1

∑

α

∑

β 6=α

aαβ |xα − xβ|2wαwβ, |δx|2w :=
∑

α

∑

β 6=α

|xα − xβ|2wαwβ.

Hence, comparing this with (3.5) one concludes

(3.9)
1

κ2N
λ2(∆A) 6 λ2(∆wA)

1
∑

β wβ

6
κ2

N
λ2(∆A), κ =

maxwα

minwα

.

The array A forms a connected graph if it has a positive Fiedler number, λ2

(

∆wA
)

> 0.

In particular, A being a connected graph, the degree of its nodes are positive,
∑

β 6=γ

aγβwβ > 0.

To quantify this statement which will be used below, we appeal to (3.4)
∑

α

∑

β 6=α

aαβ|xα − xβ|2wαwβ >
λ2(∆wA)
∑

β wβ

∑

α

∑

β 6=α

|xα − xβ|2wαwβ.
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Fix an index γ and test the last inequality with the vector

{

x
∣

∣

∣
xα =

{

0 α 6= γ,
ν, α = γ.

}

, with

normalization factor ν =
(

2
∑

β 6=γ

wβwγ

)−1/2

so that |δx|w = 1. The sum on the left is reduced

to the (γ, β)-terms with β 6= γ, for which |xγ − xβ|2 = ν2 and (α, γ)-terms with α 6= γ for

which |xα − xγ|2 = ν2 and (3.4) amounts to 2ν2
∑

β 6=γ

aγβwγwβ >
λ2(∆wA)
∑

β wβ

and we conclude

(3.10) degγ(A) :=
∑

β 6=γ

aγβwβ >

∑

β 6=γ wβ
∑

β wβ

λ2(∆wA) > ζwλ2(∆wA), ζw = 1−maxβ wβ
∑

β wβ

> 0.

Next, we extend Lemma 3.1 from vectors to vector-functions, seeking an inequality of the
form
∑

α,β

aαβ

∫∫

|uα(x)− uβ(y)|2ρα(x)ρβ(y)dxdy > ν
∑

α,β

∫∫

|uα(x)− uβ(y)|2ρα(x)ρβ(y)dxdy.

Clearly we can use ν = minαβ aαβ. But there is a sharper threshold, ν = νA, which allows
some (– and in fact most) of the entries {aαβ} to vanish yet νA > 0. In particular, νA is
independent of the (amplitudes of the) self-interacting terms {aαα}.

Lemma 3.2 (Weighted Poincaré inequality – vector-functions). Let {wγ} be weight

functions with positive masses Mγ =

∫

wγ(x)dx. There holds

∑

α6=β

aαβ

∫∫

|uα(x)− uβ(y)|2wα(x)wβ(y)dxdy

> ν
∑

α,β

∫∫

|uα(x)− uβ(y)|2wα(x)wβ(y)dxdy

(3.11)

with ν = νA given by

νA = λ2(∆MA)
ζ
M

M
, ζ

M
= 1− maxγ Mγ

M
, M =

∑

γ

Mγ .

The bound (3.11) is at the heart of matter: note that the self-interacting terms
∑

α

∫∫

|uα(x)−
uα(y)|2wα(x)wα(y)dxdy are missing on its left but present in the lower-bound on the right.

Proof of Lemma 3.2. Denote the average, uα :=

∫

wαuα(x)dx
∫

wα(x)dx
. Since

∫

x

(

uα(x)−uα

)

wα(x)dx

and

∫

y

(

uβ(y)− uβ

)

wβ(y)dy vanish, we can decompose the integral on the left of (3.11)

∫∫

|uα(x)− uβ(y)|2ρα(x)ρβ(y)dxdy

≡
∫∫

(

|uα(x)− uα|2 + |uα − uβ|2 + |uβ − uβ(y)|2
)

wα(x)wβ(y)dxdy.
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We bound each of the three integrated terms on the right. Using (3.10), the first admits the
lower-bound

∑

α6=β

aαβ

∫∫

|uα(x)− uα|2wα(x)wβ(y)dxdy =
∑

α

(

∑

β 6=α

aαβMβ

)

∫

|uα(x)− uα|2wα(x)dx

=
∑

α

degα(A)

∫

|uα(x)− uα|2wα(x)dx

> λ2(∆MA)
ζ
M

M

∑

α,β

∫∫

|uα(x)− uα|2wα(x)wβ(y)dxdy.

Similarly, the third integrand is lower-bounded by
∑

α6=β

aαβ

∫∫

|uβ(x)− uβ|2wα(x)wβ(y)dxdy =
∑

β

degβ(A)

∫

|uβ(x)− uβ|2wβ(x)dx

> λ2(∆MA)
ζ
M

M

∑

α,β

∫∫

|uβ(x)− uβ|2wα(x)wβ(x)dxdy.

Finally, by the scalar weighted Poincaré (3.4), we bound the second integrand
∑

α6=β

aαβ

∫∫

|uα − uβ|2wα(x)wβ(y)dxdy =
∑

α6=β

aαβ |uα − uβ |2MαMβ

>
λ2(∆MA)

M

∑

α,β

∫∫

|uα − uβ|2wα(x)wβ(y)dxdy.

Adding the last three lower-bounds we end up with
∑

α6=β

aαβ

∫∫

|uα(x)− uβ(y)|2wα(x)wβ(y)dxdy

> λ2(∆MA)
ζ
M

M

∑

α,β

∫∫

(

|uα(x)− uα|2 + |uα − uβ|2 + |uβ − uβ(y)|2
)

ρα(x)wβ(y)dxdy

= λ2(∆MA)
ζ
M

M

∫∫

|uα(x)− uβ(y)|2wα(x)wβ(y)dxdy,

thus proving (3.11). �

Remark 3.3 (Alignment and de-alignment). The weighted Poincaré inequality (3.11)

involves the threshold νA = λ2(∆MA)
ζ
M

M
which is independent of {aαα}: if A is con-

nected then the non-diagonal fluctuation terms dominate the self-interacting fluctuations.
In fact, this means that we can add self-fluctuations with negative amplitudes: assume that
{

aαβ > 0, α 6= β,
aαβ > −1

2
νA, α = β,

then (3.11) still survives

∑

α,β

aαβ

∫∫

|uα(x)− uβ(y)|2wα(x)wβ(y)dxdy

>
1

2
νA
∑

α,β

∫∫

|uα(x)− uβ(y)|2wα(x)wβ(y)dxdy, νA = λ2(∆MA)
ζ
M

M
.
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4. Smooth solutions must flock

In this section, we prove the main flocking statement in theorem 1.1. The key observation is
that the decay of both – the energy and uniform fluctuations are dictated by the connectivity
of the multi-species configuration. To this end, let D(t) denote the spatial diameter of the
multi-species crowd at time t

(4.1) D(t) := max
x,y∈S(t)

|x− y|, S(t) = ∪αsupp{ρα(t, ·)}.

Then Φ(D(t)) = {φαβ(D(t))} quantifies the minimal amplitude of communication between
species α and β at time t. Our first result quantifies a minimal amount of connectivity which
implies the decay of energy fluctuations

(4.2) δE(t) :=
∑

α,β∈I

∫∫

|uα(t,x)− uβ(t,y)|2ρα(t,x)ρβ(t,y)dxdy.

Theorem 4.1 (Decay of energy fluctuations).
Let (ρα(t, ·),uα(t, ·)) ∈ L1

+(R
d)×W 1,∞(Rd), α ∈ I, be a strong solution of the multi-species

dynamics (1.1), subject to initial conditions (ρα0,uα0) with initial energy fluctuations δE0 =
δE(0). Then we have the apriori bound

(4.3) δE(t) 6 δE0 · exp
{

− 2ζ
M

∫ t

0

λ2(∆MΦ(D(τ)))dτ
}

, ζ
M
= 1− maxαMα

∑

αMα
.

In particular, if the crowd dynamics satisfies a ‘fat-tail’ connectivity condition of Pareto type
(but observe the dependence on D(r) in contrast to (1.4))

(4.4) λ2(∆MΦ(D(r))) &
1

(1 + r)θ
, θ < 1,

then δE(t) decays at fractional-exponential rate

(4.5) δE(t) . δE0 · e−2ν1 ·t1−θ
, ν1 =

ζ
M

1− θ
.

Remark 4.1. Again, we observe that while the diagonal terms in δE on the left of (4.3)
account for fluctuations within the same species,

∫∫
∑

α=β |uα(x, t)−uβ(y, t)|2ραρβdxdy, the
upper-bound on the right of (4.3) involves λ2(∆MΦ) which is independent of (the amplitude
of) the self-interaction terms, {φαα}. One learns about the behavior of its own species by its
reflection through interactions with the other connected species. In fact, arguing in view of

remark 3.3 we can even allow for self-interactions with de-alignment, φαα > −λ2(∆MΦ)
ζ
M

2M
,

and yet the overall inter-species alignment will override, yielding that the crowd will align
towards u∞.

Proof. Since the total mass, M =
∑

α

∫

ρα(t,x)dx, and total momentum,
∑

α

∫

ρα(t,x)uα(t,x)dx,

are conserved in time, it follows that the decay rate of the fluctuations is the same as the
decay rate of the total kinetic energy,

d

dt
δE(t) = 2M

d

dt
E(t), E(t) :=

∑

α∈I

∫

ρα(t,x)|uα(t,x)|2dx.(4.6)
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A straightforward computation using the multi-species dynamics (1.1) yields

d

dt

(

∑

α∈I

∫

ρα|uα|2dx
)

= 2

∫

∑

α,β∈I

〈

ραuα, φαβ ∗ (ρβuβ)− (φαβ ∗ ρβ)uα

〉

dx

=2

∫∫

∑

α,β∈I

(

〈

ρα(x)uα(x), φαβ(|x− y|)ρβ(y)uβ(y)
〉

− ρα(x)|uα(x)|2φαβ(|x− y|)ρβ(y)
)

dxdy

=2

∫∫

∑

α,β∈I

〈

ρα(x)uα(x), φαβ(|x− y|)ρβ(y)uβ(y)
〉

dxdy

−
∫∫

∑

α,β∈I

(

ρα(x)|uα(x)|2φαβ(|x− y|)ρβ(y) + ρβ(y)|uβ(y)|2φβα(|x− y|)ρα(x)
)

dxdy

=−
∫∫

∑

α,β∈I

φαβ(|x− y|)|uα(t,x)− uβ(t,y)|2ρα(t,x)ρβ(t,y)dxdy.

Since φαβ are decreasing, φαβ(|x− y|) > φαβ(D(t)), hence

(4.7)
d

dt
E(t) 6 −

∑

α,β∈I

φαβ(D(t))

∫∫

|uα(t,x)− uβ(t,y)|2ρα(t,x)ρβ(t,y)dxdy.

We now appeal to the vector-function version of Poincaré inequality in Lemma 3.2, obtaining2

1

2M

d

dt
δE(t) 6 −λ2(∆MΦ(D(t)))

ζ
M

M
δE(t),

and the desired bound (4.3) follows. �

The decay of energy fluctuations, δE(t), implies decay of pointwise fluctuations

δV (u(t)) = max
α,β∈I

max
x,y∈S(t)

|uα(t,x)− uβ(t,y)|.

Theorem 4.2 (Decay of uniform fluctuations).
Let (ρα(t, ·),uα(t, ·)) ∈ L1

+(R
d)×W 1,∞(Rd), α ∈ I, be a strong solution of the multi-species

dynamics (1.1), subject to initial conditions (ρα0,uα0), and assume the crowd dynamics satis-
fies the ‘fat-tail’ connectivity condition (4.4). Then δV (u(t)) decays at fractional-exponential
rate: there exist constants C2 = C(max

α,β
φαβ(0),M) > 0 and ν2 = ν(θ,M) > 0 such that

(4.8) δV (u(t)) . C2 · δV0 · e−2ν2 · t1−θ
, δV0 = δV (u(0)).

Proof. We consider the strong solution (ρα,uα) in the non-vacuous region x,y ∈ S, where
the alignment terms on the right of (1.1) admits the usual commutator form [21]

∂tuα + (uα · ∇)uα =
∑

β∈I

{φαβ ∗ (ρβuβ)− (φαβ ∗ ρβ)uα}, ∀α, β ∈ I.(4.9)

2To be precise, here one employs the vector statement

λ2(∆MΦ)
∑

α Mα

= min
|δu|M=1

∑

α6=β∈I

Φαβ |uα − uβ |2MαMβ, |δu|2M =
∑

α6=β∈I

|uα − uβ |2MαMβ , u ∈ R
d,

which follows by aggregating the scalar components of (3.11) (as was done in [5, Sec 3.1]).
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Arguing along the lines of [15], we first fix an arbitrary unit vector w ∈ R
d and project (4.9)

onto the space spanned by w to get

(∂t + uα · ∇)〈uα(t,x),w〉 =
∑

β∈I

∫

φαβ(|x− y|)(〈uβ(t,y),w〉 − 〈uα(t,x),w〉)ρβ(t,y)dy.

Now we assume that 〈uα(t,x),w〉 reaches a maximum value at (x(t), α(t)) = (x+(t), α+(t))
and a minimum value at ((x(t), α(t)) = (x−(t), α−(t))), denoting

u+(t) := max
α∈I

sup
x∈S(t)

〈uα(t,x),w〉 = uα+(t)(x+(t)).

We abbreviate cαβ(t) := φαβ(D(t)) and uβ(t) :=
1

Mβ

∫

ρβuβ(t,y)dy. Direct computation of

the time evolution of u+(t) yields,

d

dt
u+(t) =

∑

β∈I

∫

φα+β(|x+ − y|)
(

〈uβ(t,y),w〉 − 〈uα+
(t,x+),w〉

)

ρβ(t,y)dy

6
∑

β∈I

cα+β

∫

(

〈uβ(t,y),w〉 − 〈u+(t),w〉
)

ρβ(t,y)dy

=
∑

β∈I

cα+βMβ〈uβ(t)− u+(t),w〉

=
∑

β∈I

cα+βMβ〈uβ(t)− u∞,w〉+
∑

β∈I

cα+βMβ〈u∞ − u+(t),w〉 =: I + II

(4.10)

We proceed to show that the first term is bounded by the (rapidly decaying) energy fluctu-
ations while the second term will contribute to the pointwise fluctuations. Indeed, since

cαβ(t) 6 max
α,β

φαβ(D0) =: Cφ,

and Mβ

(

uβ(t)−u∞

)

≡ 1

M

∑

α

∫∫

(uβ(t,y)−uα(t,x))ρα(t,x)ρβ(t,y)dxdy, then by Cauchy-

Schwarz we find

I 6
Cφ

M

∑

α,β

(

∫∫

|uβ(t,y)− uα(t,x)|2ρα(t,x)ρβ(t,y)dxdy
)1/2(

∫∫

ρα(t,x)ρβ(t,y)dxdy
)1/2

6
Cφ

M

(

∑

α,β

∫∫

|uβ(t,y)− uα(t,x)|2ρα(t,x)ρβ(t,y)dxdy ×
∑

α,β

∫∫

ρα(t,x)ρβ(t,y)dxdy
)1/2

= Cφ

(

δE(t)
)1/2

.

On the other hand, since 〈u∞ − u+,w〉 6 0, we use the reversed lower bound (3.10)

II 6 degα+
(Φ(D(t)))〈u∞ − u+(t),w〉 6 ζ

M
λ2(∆MΦ(D(t)))

(

u∞ − u+(t)
)

, u∞ := 〈u∞,w〉.

The last two inequalities yield

d

dt
u+(t) 6 Cφ

(

δE(t)
)1/2

+ ζ
M
λ2(∆MΦ(D(t)))

(

u∞ − u+(t)
)

;
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similarly, we estimate the time evolution of u−(t) := min
α∈I

inf
x∈S

〈uα(t,x),w〉 obtaining

d

dt
u−(t) > −Cφ

(

δE(t)
)1/2

+ ζ
M
λ2(∆MΦ(D(t)))

(

u∞ − u−(t)
)

.

The difference of the last two bounds yields the apriori bound on δV (u(t)) := u+(t)−u−(t),

(4.11)
d

dt
δV (u(t)) 6 −ζ

M
λ2(∆MΦ(D(t))) · δV (u(t)) + 2Cφ(δE(t))1/2.

Observe that δV (u(t)) = max
α,β∈I

sup
x,y∈S(t)

〈uα(t,x) − uβ(t,y),w〉 is the diameter of projected

velocities on arbitrary unit vector w. The assumed (4.4) implies that δE(t) admits the
fractional exponential decay (4.5), and we end up with,

(4.12)
d

dt
δV (u(t)) 6 −ζ

M
λ2(∆MΦ(D(t))) · δV (u(t)) + 2Cφ · (δE0)

1/2e−ν1 ·t1−θ
.

Finally, (δE0)
1/2 6 M · δV0 and by assumption λ2(∆MΦ(D(t))) & (1 + t)−θ, hence (4.8)

follows by integration of (4.12). �

Remark 4.2. Revisiting (4.10) we find

d

dt
u+(t) 6

∑

β∈I

φα+β(D(t))Mβ〈uβ(t)− u+(t),w〉 6 degα+
(Φ(D(t)))max

β∈I
〈uβ(t)− u+(t),w〉

6ζ
M
λ2(∆MΦ(D(t)))max

β∈I
〈uβ(t)− u+(t),w〉,

and likewise
d

dt
u−(t) > ζ

M
λ2(∆MΦ(D(t)))min

β∈I
〈uβ(t)− u−(t),w〉.

The difference of the last two estimates yield the apriori bound

(4.13)
d

dt
δV (u(t) 6 ζ

M
λ2(∆MΦ(D(t))) ·

(

− δV (u(t)) + δV (u(t))
)

, δV (u) := u+ − u−.

Since the diameter of averaged velocities δV (u) is smaller than the diameter of the velocities
δV (u), (4.13) implies that the pointwise velocity diameter does not increase

(4.14) δV (u(t)) 6 δV (u(t)) ❀ δV (u(t)) 6 δV0.

Note that the apriori bound (4.14) does not require any connectivity assumption; theorem 4.2
quantifies how an additional ‘fat-tail’ connectivity (4.4) enforces the fractional exponential
decay of δV (u(t)).

The last two theorems still require information on the dynamic growth of the supports
S(t) = ∪αsupp {ρα(t, ·)}, in order to access the possible growth ofD(t) and the corresponding
decay of φαβ(D(t)) in (4.4). Our next result provides apriori bound how on far the different
species can spread out, and this enables us to quantify flocking in terms of the connectivity
of {φαβ(r)}, independent of the diameter dynamics. To this end, observe that according to
the apriori bound (4.14), the velocities of the different species remain bounded, and hence
the spatial diameter of the support of the crowd can grow at most linearly in time: indeed,
tracing the particle paths (x(t),y(t)) ∈ S yields

(4.15)
d

dt
D(t) . δV (u(t)) ❀ D(t) = max

x,y∈S(t)
|x− y| . D0 + δV0 · t.
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We conclude the lower-bound (recall that φαβ are decreasing) φαβ(D(t)) & φαβ

(

D0+ δV0 · t
)

.
We are now ready to prove theorem 1.1.

Proof of theorem 1.1 proceeds in three steps.

Step #1. Fractional exponential decay. The variational characterization of the Fiedler
number (3.4), implies that λ2(·) is an increasing function of the non-negative entries in its
argument,

λ2(∆MΦ(D(t)))

M
= min

|δu|M=1

∑

α,β

φαβ(D(t)) · |uα − uβ|2MαMβ

& min
|δu|M=1

∑

α,β

φαβ

(

D0 + δV0 · t
)

· |uα − uβ|2MαMβ

=
λ2

(

∆MΦ
(

D0 + δV0 · t
))

M
.

(4.16)

Hence, the Pareto decay λ2(∆MΦ(r)) & (1+r)−θ assumed in (1.4) implies λ2(∆MΦ(D(t))) &
(1 +D0 + δV0 · t)−θ and the apriori estimate (4.3) implies

δE(t) . δE0 · e−2ν3 ·t1−θ
, ν3 :=

ζ
M

(1− θ) · δV0

.

Step #2. Finite diameter. The Pareto-type condition (1.4) implies an improved flocking
rate of full exponential rate. Indeed, the apriori bound (4.11) together with (4.16) yield

d

dt
δV (u(t)) . −(1 +D0 + δV0 · t)−θ · δV (u(t)) + 2Cφ · δ(E0)

1/2e−ν3 · t1−θ
.

As before we use (δE0)
1/2 6 M · δV0; integrating the last inequality we find that δV (u(t))

satisfies a fractional exponential decay

δV (u(t)) . δV0 · e−ν4 ·t1−θ
, ν4 = min{ν1, ν3} > 0

which in turn implies a bounded spatial diameter uniformly in time,

(4.17)
d

dt
D(t) 6 δV (u(t)) . δV0 · e−ν4 ·t1−θ

❀ D(t) 6 D∞ .
1−θ,M

D0 + δV0 < ∞.

Step #3. Exponential decay. We now have a uniform lower bound on the minimal
communication, φαβ(D(t)) > φαβ(D∞). Hence, the monotone increasing dependence of
λ2(∆MA) on the entries of A, consult (3.8), we have

(4.18) λ2(∆MΦ(D(t))) > λ2(∆MΦ∞) > 0, Φ∞ := {φαβ(D∞)}.
We revisit the energy apriori fluctuations bound (4.3), obtaining the exponential decay

δE(t) 6 δE0 · e−2νt, ν = ζ
M
λ2(∆MΦ∞).

Since
∑

α

∫

|uα(t,x)−u∞|2ρα(t,x)dx ≡ 1

2M
δE(t), exponential flocking (1.5) follows. More-

over, revisiting the uniform fluctuations (4.8) with (4.18) yields the exponential decay

(4.19) max
α∈I

sup
x∈S(t)

|uα(t,x)− u∞| . δV0 · e−νt.

�
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5. Existence of global smooth solutions

5.1. Critical threshold in one-dimensional flocking dynamics.

Proof of Theorem 1.2. Taking spatial derivative of the momentum equation (1.1) yields

(∂t + uα∂x)

(

∂xuα +
∑

β∈I

φαβ ∗ ρβ
)

= −∂xuα

(

∑

β∈I

φαβ ∗ ρβ + ∂xuα

)

, ∀α ∈ I.(5.1)

Thus, the “e”-quantities, eα := ∂xuα +
∑

β φαβ ∗ ρβ satisfy ∂teα + ∂x(uαeα) = 0 and pairing

it with the mass equations ∂tρα + ∂x(uαρα) = 0 yields

∂tqα + uα∂xqα = 0, qα :=
eα
ρα

.

It follows that qα > 0 and hence eα > 0 are invariant zones: if eα(t = 0, x) > 0 for all x ∈ T

then

∂xuα +
∑

β∈I

φαβ ∗ ρβ > 0, ∀t > 0.(5.2)

Moreover, arguing along the lines of [21, sec. 3]

ρα + uα∂xρα = −∂xuαρα = −
(

eα −
∑

β∈I

φαβ ∗ ρβ
)

ρα = −qαρ
2
α + ρα

∑

β∈I

φαβ ∗ ρβ,

and the uniform bound |eα/ρα(t, ·)|∞ 6 |eα/ρα(0, ·)|∞ < ∞ reveals that ρα remains bounded
away from vacuum.

Since φαβ are uniformly bounded, we obtain the lower bound,

∂xuα(x, t) > −
∑

β∈I

|φαβ|∞Mβ , ∀(t, x) ∈ (R+,T), α ∈ I.(5.3)

On the other hand we can see directly from the equation (5.1) that ∂xuα has an upper bound
for all time. Combining this with the lower bound, we have that |∂xuα|∞ 6 C < ∞ for all
time and the existence of strong solutions follows. �

5.2. Critical threshold in two-dimensional flocking dynamics.

Proof of Theorem 1.4. Our purpose is to show that the derivative {∂jui
α} are uniformly

bounded. We proceed in four steps along the lines of [15] for the case of two-dimensional
single species dynamics.

Step #1 — the dynamics of divuα+
∑

β∈I φαβ ∗ ρβ. Differentiation of (4.9) implies that the

velocity gradient matrix, (∇uα)ij = ∂ju
i
α, satisfies

(∇uα)t + uα · ∇(∇uα) + (∇uα)
2 = −

∑

β∈I

φαβ ∗ ρβ∇uα +Rα,(5.4)

where the entries of the residual matrices

(Rα)ij :=
∑

β∈I

∫

∂jφαβ(|x− y|)(ui
β(y)− ui

α(x))ρβ(y)dy,
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do not exceed |(Rα)ij | 6
∑

β∈I |φ′
αβ|∞Mβ · δV (t). The entries of the residual matrix {(Rα)ij}

can be estimated using the exponentially decaying velocity fluctuations (4.19)

|(Rα)ij | 6
∑

β∈I

|φ′
αβ|∞Mβ · δV (t) . δV0 · e−2νt.(5.5)

The first step is to bound the divergence: taking the trace of (5.4) we find that dα := ∇·uα

satisfies

(∂t + uα · ∇)dα + Tr (∇uα)
2 = −

(

∑

β∈I

φαβ ∗ ρβ
)

dα + TrRα.(5.6)

Arguing along the lines of [3] we invoke the mass equation and obtain the following relation,

TrRα =
∑

β∈I

φαβ ∗ ∇ · (ρβuβ)−
∑

β∈I

uα · ∇φβ ∗ ρβ = −
(

∑

β∈I

φαβ ∗ ρβ
)

t

− uα · ∇
(

∑

β∈I

φαβ ∗ ρβ
)

=−
(

∑

β∈I

φαβ ∗ ρβ
)′

,

where (·)′ denotes the material derivative. Similar to the paper [15], we define the following
two quantities

(5.7) ∇uα = Sα + Ωα, Sα =
1

2
(∇uα +∇u⊤

α ), Ωα :=

(

0 −ωα

ωα 0

)

,

where ωα is the scaled vorticity ωα = 1
2
(∂1u

2
α − ∂2u

1
α). The symmetric part Sα has two real

eigenvalue, i.e., λ1(Sα) 6 λ2(Sα). Next, we recall the identity relating the trace Tr (∇uα)
2

to the spectral gap, λ2(Sα)− λ1(Sα) > 0, [15, eq.(2.11)],

Tr (∇uα)
2 ≡ d2

α + η2α − 4ω2
α

2
, ηα := λ2(Sα)− λ1(Sα) > 0.(5.8)

Expressed in terms of ηα, the trace dynamics (5.6) now reads
(

dα +
∑

β∈I

φαβ ∗ ρβ
)′

=
1

2
(4ω2

α − η2α)−
1

2
dα

(

dα + 2
∑

β∈I

φαβ ∗ ρβ
)

.

This calls for the introduction of the new “natural” variable eα = dα +
∑

β∈I φαβ ∗ ρβ ,
satisfying

e
′
α =

1

2

(

(

∑

β∈I

φαβ ∗ ρβ
)2

+ 4ω2
α − η2α − e

2
α

)

.(5.9)

Our purpose is to show that {x | eα(t,x) > 0, ∀α ∈ I} is invariant region of the dynamics
(5.9).

Step #2 — bounding the spectral gap ηα. Consider the dynamics of the symmetric part of
(5.4)

(Sα)t + uα · ∇Sα + S2
α − ω2

α

4
I2×2 = −

∑

β∈I

φαβ ∗ ρβSα + Rα,sym, Rα,sym =
1

2
(Rα +R⊤

α ).
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The spectral dynamics of its eigenvalues λi(Sα) is governed by

(5.10) λ′
i + λ2

i = ω2
α −

(

∑

β∈I

φαβ ∗ ρβ
)

λi +
〈

siα, Rα,syms
i
α

〉

driven by the orthonormal eigenpair {s1α, s2α} of the symmetric Sα. Taking the difference, we
find that ηα = λ2(Sα)− λ1(Sα) > 0 satisfies,

(5.11) (ηα)
′ + eαηα = qα, qα :=

〈

s2α, Rα,syms
2
α

〉

−
〈

s1α, Rα,syms
1
α

〉

.

The residual term qα is upper-bounded by the size of the entries {Ri
α,j} in (5.5), |qα(t, ·)|∞ 6

2maxij |Ri
α,j(t, ·)|∞ . δV0 · e−2νt. Hence, as long as eα(t, ·) remains positive, the spectral

gap does not exceed

(5.12) |ηα(t,x)| 6 max
x

|ηα(0,x)|+ Const.
δV0

ν
< C1.

The first inequality on the right follows from integration of (5.11); the second follows from
the assumed bound on |ηα(0)| 6 1

2
C1 in (1.8b), and our choice of small enough δV0 6 C1, so

that Const.
δV0

ν
6

1

2
C1; the constant C1 is yet to be determined.

Step #3 — The invariance of eα(t, ·) > 0 . We return to (5.9): expressed in terms of the
lower bound

∑

β∈I φαβ ∗ ρβ >
∑

β∈I φαβ(D∞)Mβ we find

(5.13) e
′
α >

1

2

(

b2α − e
2
α

)

, bα(t,x) :=

√

√

√

√

(

∑

β∈I

φαβ(D∞)Mβ

)2

− η2α(t,x).

Observe that bα are well-defined: we set

(5.14) C1 :=
1√
2
min
α

∑

β∈I

φαβ(D∞)Mβ ,

so that the upper-bound (5.12) implies
(

∑

β∈I

φαβ(D∞)Mβ

)2

− η2α(t,x) >
1

2
C2

0 ❀ bα(t,x) > c− :=
1√
2
C1 > 0.

Since e
′
α > 1

2
((c−)

2 − e
2
α) = 1

2
(c− − eα)(c− + eα), it follows that eα is increasing whenever

eα ∈ (−c−, c−) and in particular, if eα(0) > 0, ∀α ∈ I then eα(t,x) remains positive at later
times. Thus, if the initial data are sub-critical in the sense that (1.8a) holds

eα(0,x) = divuα(0,x) +
∑

β∈I

φαβ ∗ ρα(0,x) > 0, ∀x ∈ R
2,

then eα(t, ·) > 0 and ηα(t, ·) remains bounded.

Step #4 — an upper-bound of eα(t, ·). The lower-bound eα > 0 implies that the vorticity is
bounded. Indeed, the anti-symmetric part of (5.4) yields that the vorticity ωα satisfies

(5.15) ω′
α + eαωα =

1

2
Tr JRα, J =

(

0 −1
1 0

)
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hence applying (5.5) yields

(5.16) |ωα|′ 6 −eα|ωα|+
1

2
|qα|, |qα(t, ·)| . δV0 · e−2νt

and we end up with same upper-bound on ωα as with ηα,

(5.17) |ωα(t, ·)|∞ 6 (ωα)+, (ωα)+ := max
x

|ωα(0,x)|+
1

2
C1.

Returning to (5.9) we have

e
′
α 6

1

2

(

(

∑

β∈I

φαβ ∗ ρβ
)2

+ 4ω2
α − e

2
α

)

6
1

2

(

(

∑

β∈I

|φαβ|∞Mβ

)2

+ 4(ωα)
2
+ − e

2
α

)

,

which implies that |eα(t, ·)|∞ 6 (eα)+ < ∞. The uniform bound on eα implies that divuα

is uniformly bounded, | divuα| 6 |eα|∞ +
∑

β∈I |φαβ ∗ ρβ|∞ 6 (eα)+ +
∑

β∈I |φαβ|∞Mβ, and

together with the bound on the spectral gap (5.12), it follows that the symmetric part {Sα}
is bounded. Finally, together with the vorticity bound (5.17) it follows that {∂jui

α} are
uniformly bounded which completes the proof. �

6. Multi-species aggregation dynamics

In this section, we prove Theorem 1.4. We begin by letting x∞(t) denote the center of
mass at time t, i.e.,

(6.1) x∞(t) :=
1

M

∑

α∈I

xα(t), xα(t) =

∫

Rd

ρα(t,x)xdx.

The total mass M =
∑

α

∫

ρα(t,x)dx is conserved in time. Moreover, by the assumed
symmetry of the Φ = {φαβ} array, the total first moment is also conserved in time,

d

dt

∑

α∈I

∫

ρα(t,x)xdx = −
∫∫

∑

α,β∈I

φαβ(|x− y|)(x− y)ρβ(t,y)ρα(t,x)dxdy = 0,

since the last integrand in anti-symmetric in (x,y). Hence the center of mass is invariant in
time x∞(t) = x∞(0).

By assumption, initial densities ρα(0)’s are compactly supported. What distinguishes the
first-order multi-species aggregation dynamics (1.9) is the fact that the diameter of this
support does not increase in time, in contrast to the possible expansion (4.17) of D(t) in the
second-order flocking dynamics (1.1).

Theorem 6.1 (Uniformly bounded support).
Consider a strong solution of (1.1), {ρα(t, ·) ∈ W 1

+(R
d), α ∈ I}, subject to compactly sup-

ported initial data {ρα0}. Then the diameter of its support,

D(t) := sup
x,y∈S(t)

|x− y|, S(t) = ∪αsupp {ρα(t, ·)}

does not increase in time D(t) 6 D0.

Proof. There are various approaches to trace the diameter D(t) for one-species dynamics,
e.g., [2, 4]. Here we proceed by considering the p-weighted diameter (p-Wasserstein metric),

Wp(ρ(t)) :=

∫∫

∑

α,β∈I

|x− y|pρα(t,x)ρβ(t,y)dxdy.
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We abbreviate dmαβγ(t,x,y, z) = ργ(t, z)ρα(t,x)ρβ(t,y)dxdydz. Differentiation yields

d

dt
Wp(ρ(t)) =

∫∫

∑

α,β∈I

|x− y|p∂tρα(t,x)ρβ(t,y)dxdy

+

∫∫

∑

α,β∈I

|x− y|pρα(t,x)∂tρβ(t,y)dxdy

= −2

∫∫∫

∑

α,β,γ∈I

p|x− y|p−2〈(x− y), (x− z)〉φαγ(|x− z|)dmαβγ(t,x,y, z).

(6.2)

The convexity |w|p which tells us that |w−v|p > |w|p−p|w|p−2〈w,v〉: setting w = x−y
and v = x− z we find that the last integral does not exceed

−
∫∫

∑

α,β,γ∈I

p|x− y|p−2〈(x− y), (x− z)〉φαγ(|x− z|)dmαβγ(t,x,y, z)

6

∫∫

∑

α,β,γ∈I

(|z− y|p − |x− y|p)φαγ(|x− z|)dmαβγ(t,x,y, z)

=

∫∫∫

∑

α,β,γ∈I

|z− y|pφαγ(|x− z|)dmαβγ(t,x,y, z)

−
∫∫∫

∑

α,β,γ∈I

|x− y|pφαγ(|x− z|)dmαβγ(t,x,y, z) =: I + II

Now exchange α ↔ γ and x ↔ z in I to conclude that I+II = 0, henceWp(ρ(t)) 6 Wp(ρ(0)).
In particular, letting p ↑ ∞ yields the desired result D(t) 6 D0. �

The case p = 2 deserves special attention: in this case, we can quantify the strict decay
rate of W2(ρ(t)) in term of the connectivity of the communication array Φ(r).

Theorem 6.2 (Decay of weighted diameter).
Consider a strong solution of (1.1), {ρα(t, ·) ∈ W 1

+(R
d), α ∈ I}, subject to compactly sup-

ported initial data ρα0 and communication array Φ0 = {φαβ(D0)}α,β∈I. Then the weighted
diameter δD(t) satisfies

(6.3) δD(t) 6 e−2ζ
M
λ2(∆MΦ0)t · δD0, δD(t) =

∑

α,β∈I

∫∫

|x− y|2ρα(t,x)ρβ(t,y)dxdy.

Proof. We begin with computing the time evolution of δD(t) = W2(ρ(t)) in (6.2): the special
case p = 2 yields, upon exchange x ↔ z,

d

dt

(

∑

α,β∈I

∫∫

|x− y|2ρα(t,x)ρβ(t,y)dxdy
)

= −2M
∑

α,β∈I

∫∫

φαβ(|x− y|)〈(x− y), 2x〉ρβ(t,y)ρα(t,x)dxdy.

Alternatively, since the center of mass
∑

α

∫

ρα(t,x)xdx is invariant in time, the change of the

weighted diameter
d

dt
δD(t) equals the rate of the total second moment

∑

α∈I

∫

|x|2ρα(t,x)dx;
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arguing along the lines of the proof of theorem 4.1 we find

1

2M

d

dt

(

∑

α,β∈I

∫∫

|x− y|2ρα(t,x)ρβ(t,y)dxdy
)

=
d

dt

(

∑

α∈I

∫

|x|2ρα(t,x)dx
)

=−
∑

α,β∈I

∫∫

φαβ(|x− y|)〈(x− y), 2x〉ρβ(t,y)ρα(t,x)dxdy

=−
∑

α,β∈I

∫∫

φαβ(|x− y|)|x− y|2ρα(t,x)ρβ(t,y)dxdy

6−
∑

α,β∈I

φαβ(D0)

∫∫

|x− y|2ρα(t,x)ρβ(t,y)dxdy.

The last step follows from |x−y| 6 D(t) 6 D0 and recalling that φαβ are decreasing. Using
the vector version of Poincaré inequality (3.11) with (uα(x),uβ(y)) = (x,y) we conclude

1

2M

d

dt

∑

α,β∈I

∫∫

|x− y|2ρα(t,x)ρβ(t,y)dxdy

=− λ2(∆MΦ(D0))
ζ
M

M

∑

α,β∈I

∫∫

|x− y|2ρα(t,x)ρβ(t,y)dxdy.

The bound (6.3) follows. �
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